Structural insights into the recognition of substrates and activators by the OSR1 kinase.

نویسندگان

  • Fabrizio Villa
  • Jürgen Goebel
  • Fatema H Rafiqi
  • Maria Deak
  • Jacob Thastrup
  • Dario R Alessi
  • Daan M F van Aalten
چکیده

The oxidative-stress-responsive kinase 1 (OSR1) and the STE20/SPS1-related proline/alanine-rich kinase (SPAK) are key enzymes in a signalling cascade regulating the activity of Na(+)/K(+)/2Cl(-) co-transporters (NKCCs) in response to osmotic stress. Both kinases have a conserved carboxy-terminal (CCT) domain, which recognizes a unique peptide (Arg-Phe-Xaa-Val) motif present in OSR1- and SPAK-activating kinases (with-no-lysine kinase 1 (WNK1) and WNK4) as well as its substrates (NKCC1 and NKCC2). Here, we describe the structural basis of this recognition event as shown by the crystal structure of the CCT domain of OSR1 in complex with a peptide containing this motif, derived from WNK4. The CCT domain forms a novel protein fold that interacts with the Arg-Phe-Xaa-Val motif through a surface-exposed groove. An intricate web of interactions is observed between the CCT domain and an Arg-Phe-Xaa-Val motif-containing peptide derived from WNK4. Mutational analysis shows that these interactions are required for the CCT domain to bind to WNK1 and NKCC1. The CCT domain structure also shows how phosphorylation of a Ser/Thr residue preceding the Arg-Phe-Xaa-Val motif results in a steric clash, promoting its dissociation from the CCT domain. These results provide the first molecular insight into the mechanism by which the SPAK and OSR1 kinases specifically recognize their upstream activators and downstream substrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural insights into the effects of charge-reversal substitutions at the surface of horseradish peroxidase

Horseradish peroxidase (HRP), has gained significant interests in biotechnology, especially in biosensor field and diagnostic test kits. Hence, its solvent-exposed lysine residues 174, 232, and 241 have been frequently modified with the aim of improving its stability and catalytic efficiency. In this computational study, we investigated the effects of Lys-to-Glu substitutions on HRP structure t...

متن کامل

Structure of the OSR1 kinase, a hypertension drug target.

The oxidative stress-responsive kinase-1 (OSR1) and STE20/SPS1-related proline/alanine-rich kinase (SPAK) interact, phosphorylate, and stimulate the activity of the cation-chloride cotransporters (NKCC1, NKCC2, and the Na1:Cl2 cotransporter (NCC)).1–4 These cotransporters play key roles in regulating salt intake and secretion from cells (reviewed in Refs. 5,6). Some of the most commonly prescri...

متن کامل

SPAK/OSR1 regulate NKCC1 and WNK activity: analysis of WNK isoform interactions and activation by T-loop trans-autophosphorylation

Mutations in the WNK [with no lysine (K) kinase] family instigate hypertension and pain perception disorders. Of the four WNK isoforms, much of the focus has been on WNK1, which is activated in response to osmotic stress by phosphorylation of its T-loop residue (Ser382). WNK isoforms phosphorylate and activate the related SPAK (SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stres...

متن کامل

Effects of Antiproliferative Protein (APP) on Modulation of Cytosolic Protein Phosphorylation of Prostatic Carcinoma Cell Line LNCaP

Antiproliferative protein (APP) isolated from conditioned media of two androgen-independent prostatic carcinoma cell lines, PC3 and Du-145 was shown to inhibit selectively cell proliferation of androgen-dependent prostate cancer cell line LNCaP in a dose dependent manner. This protein was further purified with HPLC using hydrophobic interaction column (phenyl 5PW) and was used to study the modu...

متن کامل

The WNK1 and WNK4 protein kinases that are mutated in Gordon's hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases.

Mutations in the human genes encoding WNK1 [with no K (lysine) protein kinase-1] and the related protein kinase WNK4 are the cause of Gordon's hypertension syndrome. Little is known about the molecular mechanism by which WNK isoforms regulate cellular processes. We immunoprecipitated WNK1 from extracts of rat testis and found that it was specifically associated with a protein kinase of the STE2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EMBO reports

دوره 8 9  شماره 

صفحات  -

تاریخ انتشار 2007